Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine

Communications Chemistry(2021)

引用 31|浏览40
暂无评分
摘要
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15–35 eV attosecond pulse. We find that the production of intact doubly charged adenine – via a shortly-delayed laser-induced second ionisation event – represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale. Sudden ionisation of larger molecules can initiate a correlation-driven process called charge migration, but due to its short time scale this process is challenging to observe. Here, the authors ionise adenine with extreme ultraviolet light and observe electron correlation in the molecule at the attosecond scale in real-time.
更多
查看译文
关键词
Biophysical chemistry,Chemical physics,Excited states,Photochemistry,Chemistry/Food Science,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要