A naturally fluorescent protein C-phycoerythrin and graphene oxide bio-composite as a selective fluorescence 'turn off/on' probe for DNA quantification and characterization.

International journal of biological macromolecules(2021)

引用 7|浏览2
暂无评分
摘要
Highly specific graphene-DNA interactions have been at the forefront of graphene-based sensor design for various analytes, including DNA itself. However, in addition to its detection, DNA also needs to be characterized according to its size and concentration in a sample, which is an additional analytical step. Designing a highly sensitive and selective DNA sensing and characterization platform is, thus, of great interest. The present study demonstrates that a bio-derived, naturally fluorescent protein C-phycoerythrin (CPE) - graphene oxide (GO) bio-composite can be used to detect dsDNA in nanomolar quantities efficiently via fluorescent "turn off/on" mechanism. Interaction with GO temporarily quenches CPE fluorescence in a dose-dependent manner. Analytical characterization indicates an indirect charge transfer with a corresponding loss of crystalline GO structure. The fluorescence is regained with the addition of DNA, while other biomolecules do not pose any hinderance in the detection process. The extent of regain is DNA length dependent, and the corresponding calibration curve successfully quantifies the size of an unknown DNA. The incubation time for detection is ~3-5 min. The bio-composite platform also works successfully in a complex biomolecule matrix and cell lysate. However, the presence of serum albumin poses a hinderance in the serum sample. Particle size analysis proves that CPE displacement from GO surface by the incoming DNA is the reason for the 'turn on' response, and that the sensing process is exclusive to dsDNA. This new platform could be an exciting and rapid DNA sensing and characterization tool.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要