A Robust Framework For Simultaneous Localization And Mapping With Multiple Non-Repetitive Scanning Lidars

REMOTE SENSING(2021)

Cited 10|Views8
No score
Abstract
With the ability to provide long range, highly accurate 3D surrounding measurements, while lowering the device cost, non-repetitive scanning Livox lidars have attracted considerable interest in the last few years. They have seen a huge growth in use in the fields of robotics and autonomous vehicles. In virtue of their restricted FoV, they are prone to degeneration in feature-poor scenes and have difficulty detecting the loop. In this paper, we present a robust multi-lidar fusion framework for self-localization and mapping problems, allowing different numbers of Livox lidars and suitable for various platforms. First, an automatic calibration procedure is introduced for multiple lidars. Based on the assumption of rigidity of geometric structure, the transformation between two lidars can be configured through map alignment. Second, the raw data from different lidars are time-synchronized and sent to respective feature extraction processes. Instead of sending all the feature candidates for estimating lidar odometry, only the most informative features are selected to perform scan registration. The dynamic objects are removed in the meantime, and a novel place descriptor is integrated for enhanced loop detection. The results show that our proposed system achieved better results than single Livox lidar methods. In addition, our method outperformed novel mechanical lidar methods in challenging scenarios. Moreover, the performance in feature-less and large motion scenarios has also been verified, both with approvable accuracy.
More
Translated text
Key words
multiple lidar, non-repetitive scanning, Livox, mapping and odometry, multi-sensor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined