Co-production of polyhydroxybutyrate (PHB) and coenzyme Q10 (CoQ10) via no-sugar fermentation—a case by Methylobacterium sp. XJLW

Hunan University of Chinese Medicine,Shao Yunhai,Wang Yanxin,Zhao Rui, Zhan Huihui,Zhong Weihong

Annals of Microbiology(2021)

引用 1|浏览2
暂无评分
摘要
To explore a competitive PHB-producing fermentation process, this study evaluated the potential for Methylobacterium sp. XJLW to produce simultaneously PHB and coenzyme Q10 (CoQ10) using methanol as sole carbon and energy source. The metabolic pathways of PHB and CoQ10 biosynthesis in Methylobacterium sp. XJLW were first mined based on the genomic and comparative transcriptomics information. Then, real-time fluorescence quantitative PCR (RT-qPCR) was employed for comparing the expression level of important genes involved in PHB and CoQ10 synthesis pathways’ response to methanol and glucose. Transmission electron microscope (TEM), gas chromatography/mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), Fourier transformation infrared spectrum (FT-IR), and liquid chromatography/mass spectrometry (LC-MS) methods were used to elucidate the yield and structure of PHB and CoQ10, respectively. PHB and CoQ10 productivity of Methylobacterium sp. XJLW were evaluated in Erlenmeyer flask for medium optimization, and in a 5-L bioreactor for methanol fed-batch strategy according to dissolved oxygen (DO) and pH control. Comparative genomics analysis showed that the PHB and CoQ10 biosynthesis pathways co-exist in Methylobacterium sp. XJLW. Transcriptomics analysis showed that the transcription level of key genes in both pathways responding to methanol was significantly higher than that responding to glucose. Correspondingly, strain Methylobacterium sp. XJLW can produce PHB and CoQ10 simultaneously with higher yield using cheap and abundant methanol than using glucose as sole carbon and energy source. The isolated products showed the structure characteristics same to that of standard PHB and CoQ10. The optimal medium and cultural conditions for PHB and CoQ10 co-production by Methylobacterium sp. XJLW was in M3 medium containing 7.918 g L-1 methanol, 0.5 g L-1 of ammonium sulfate, 0.1% (v/v) of Tween 80, and 1.0 g L-1 of sodium chloride, under 30 °C and pH 7.0. In a 5-L bioreactor coupled with methanol fed-batch process, a maximum DCW value (46.31 g L-1) with the highest yields of PHB and CoQ10, reaching 6.94 g L-1 and 22.28 mg L-1, respectively. Methylobacterium sp. XJLW is potential for efficiently co-producing PHB and CoQ10 employing methanol as sole carbon and energy source. However, it is still necessary to further optimize fermentation process, and genetically modify strain pathway, for enhanced production of PHB and CoQ10 simultaneously by Methylobacterium sp. XJLW. It also suggests a potential strategy to develop efficiently co-producing other high-value metabolites using methanol-based bioprocess.
更多
查看译文
关键词
Methylobacterium sp. XJLW,Metabolic pathway mining,Methanol-based process,PHB,CoQ10,Fed-batch fermentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要