Combining Quantitative Phase Microscopy And Laser-Induced Shockwave For The Study Of Cell Injury

BIOMEDICAL OPTICS EXPRESS(2021)

引用 4|浏览12
暂无评分
摘要
In this paper, we propose a new system for studying cellular injury. The system is a biophotonic work station that can generate Laser-Induced Shockwave (LIS) in the cell culture medium combined with a Quantitative Phase Microscope (QPM), enabling the real-time measurement of intracellular dynamics and quantitative changes in cellular thickness during the damage and recovery processes. In addition, the system is capable of Phase Contrast (PhC) and Differential Interference Contrast (DIC) microscopy. Our studies showed that QPM allows us to discern changes that otherwise would be unnoticeable or difficult to detect using phase or DIC imaging. As one application, this system enables the study of traumatic brain injury in vitro. Astrocytes are the most numerous cells in the central nervous system (CNS) and have been shown to play a role in the repair of damaged neuronal tissue. In this study, we use LIS to create a precise mechanical force in the culture medium at a controlled distance from astrocytes and measure the quantitative changes, in order of nanometers, in cell thickness. Experiments were performed in different cell culture media in order to evaluate the reproducibility of the experimental method. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要