Chalcogen-doped zinc oxide nanoparticles for photocatalytic degradation of Rhodamine B under the irradiation of ultraviolet light

Materials Today Chemistry(2021)

Cited 32|Views3
No score
Abstract
In the present work, the chalcogen (Se2+)-doped ZnO nanoparticles (SeZO-NPs) were synthesized using sol-gel precipitation method and tested for photocatalytic degradation of Rhodamine B (RhB). X-ray diffraction pattern of SeZO-NPs showed the hexagonal wurtzite crystal structure regardless of Se concentration. The band edge and defect-level emissions of SeZO-NPs were determined by using the photoluminescence spectra with the excitation source of 370 nm. The bandgap, Eg, of SeZO-NPs was measured from diffused reflectance spectroscopy, which increased from 3.22 to 3.26 eV as Se concentration increased from 0 to 10 wt.%. The highest specific surface area and lowest pore size of 5-SeZO-NPs were observed to be 36.42 m2/g and 13.48 nm, respectively. The photocatalytic degradation of SeZO-NPs was measured under the illumination of ultraviolet (UV) light. The double donor (Se) played an important role toward photodegradation of RhB via reducing the recombination of charge carriers. The highest photocatalytic degradation (98.23%) and mineralization were achieved for the sample 5-SeZO (Se: 5 wt.%). The improved photocatalytic performance of 5-SeZO was attributed to the optimum Se dopant concentration for the production of more reactive oxygen species because of effective separation of charge carriers in UV light.
More
Translated text
Key words
Se2+-doped ZnO nanoparticles (SeZO-NPs),Sol-gel precipitation synthesis,Tuning of the microstructure and PL peaks,Degradation mechanism of RhB under UV light
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined