Design And Operation Of A Portable Micro-Photoluminescence Spectrometer For Education On Semiconductor Quantum Structures And Graphene Sheets

REVIEW OF SCIENTIFIC INSTRUMENTS(2021)

引用 1|浏览5
暂无评分
摘要
The design and operation of a portable micro-photoluminescence spectrometer for applications in education is described. Guidelines are a compact, robust, portable, and flexible design; operation without cryogenic media for sample cooling; and a limited budget. Targeted samples are semiconductor quantum structures emitting in a wavelength range of 600-1000 nm and graphene sheets. The portable spectrometer includes a reflected-light microscope with a motorized sample stage of 156 nm step size, a thermoelectric sample cooler allowing temperatures down to 196 K, a green and a blue laser for focused excitation, a monochromator with 0.18 nm spectral resolution, and a cooled camera as the image sensor. For demonstration of the capabilities of the spectrometer, measurements of the quantized energy levels of molecular beam epitaxy grown GaAs quantum dots (QDs) are shown. Here, different sample designs are used, the sample temperature as well as the laser excitation power and energy is varied, and the respective influence on the measurements is discussed. A clear QD shell structure with four states is shown for a sample, where approximately four QDs are directly excited by a focused laser. Limitations of the spectrometer for QD characterization mainly due to the waiver of cryogenic media for sample cooling are discussed. As a further example, which does not require sample cooling, local Raman spectroscopy of a graphene sheet is demonstrated where clear Raman signatures allow the identification of a single-layer thickness. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要