谷歌浏览器插件
订阅小程序
在清言上使用

Improved creep performance of melt‐extruded polycaprolactone/organo‐bentonite nanocomposites

Journal of Applied Polymer Science(2021)

引用 6|浏览5
暂无评分
摘要
In this work, biodegradable nanocomposites based on polycaprolactone reinforced with pristine and organo-modified bentonites are prepared by melt extrusion. Bentonite is exchanged with benzalkonium chloride (CBK) in a pilot plant scale reactor. The influence of clay type and loading on morphology, rheology, mechanical properties, and creep performance of the resulting materials is analyzed. Besides, several theoretical models then applied to experimental creep data and master curves are used to relate time and temperature with the compliance of the materials. The morphology characterization of the nanocomposites show that the organo-modification of the clay greatly improves its dispersion in the polymer matrix. As a consequence, it is demonstrated that reinforcement of PCL with 3 wt% loading of organoclay produces the strongest improvement in creep resistance. The instantaneous creep strain and the experimental creep rate decrease more than 9% and 27%, respectively, in the range of temperatures analyzed. Moreover, the experimental values are used to adequately fit theoretical creep models for different clay loadings. On the other hand, the material with optimal creep behavior also shows the greatest improvements in tensile mechanical properties.
更多
查看译文
关键词
biodegradable, creep, extrusion, mechanical properties, nanocrystals, nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要