Substitution Effects On A New Pyridylbenzimidazole Acceptor For Thermally Activated Delayed Fluorescence And Their Use In Organic Light-Emitting Diodes

ADVANCED OPTICAL MATERIALS(2021)

引用 5|浏览15
暂无评分
摘要
In this work a new acceptor is used for use in thermally activated delayed fluorescence (TADF) emitters, pyridylbenzimidazole, which when coupled with phenoxazine allows efficient TADF to occur. N-functionalization of the benzimidazole using methyl, phenyl, and tert-butyl groups permits color tuning and suppression of aggregation-caused quenching (ACQ) with minimal impact on the TADF efficiency. The functionalized derivatives support a higher doping of 7 wt% before a fall-off in photoluminescence quantum yields is observed, in contrast with the parent compound, which undergoes ACQ at doping concentrations greater than 1 wt%. Complex conformational dynamics, reflected in the time-resolved decay profile, is found. The singlet-triplet energy gap, Delta E-ST, is modulated by N-substituents of the benzimidazole and ranges of between 0.22 and 0.32 eV in doped films. Vacuum-deposited organic light-emitting diodes, prepared using three of the four analogs, show maximum external quantum efficiencies, EQE(max), of 23.9%, 22.2%, and 18.6% for BIm(Me)PyPXZ, BIm(Ph)PyPXZ, and BImPyPXZ, respectively, with a correlated and modest efficiency roll-off at 100 cd m(-2) of 19% 13%, and 24% of the EQE(max), respectively.
更多
查看译文
关键词
DFT calculations, organic light-emitting diodes, photophysics, pyridylbenzimidazole, thermally activated delayed fluorescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要