Precision Embolism: Biocompatible Temperature-Sensitive Hydrogels As Novel Embolic Materials For Both Mainstream And Peripheral Vessels

Advanced Functional Materials(2021)

引用 7|浏览9
暂无评分
摘要
Complete blood blockage and low ectopic embolism risk are urgently needed for transcatheter arterial chemoembolization (TACE) treatment. However, the clinically available embolic reagents still face the huge challenges of fast recanalization and undesirable migration. In the present work, a temperature-sensitive poloxamer 407 (F127)/hydroxymethyl cellulose (HPMC)/sodium alginate (SA)-derived hydrogel (FHSgel) is explored as a novel embolic material in the TACE treatment. With increasing temperature, this FHSgel undergoes sensitive phase transition process, so as to block both mainstream and peripheral vessels. Meanwhile, taking advantage of the close fitness between shapeable FHSgel and vessels, the embolism time is extremely extended. Moreover, the leaked FHSgel could be diluted below the gelation concentration, thus effectively preventing from ectopic embolism. TACE treatment is further conducted for rabbit liver and kidney tumors, wherein the atrophic blood vessels and necrotic tissue demonstrate superior therapy effect. In addition, all three pharmaceutical excipients are approved by the Food and Drug Administration (FDA). In contrast with the clinical embolic reagents, the temperature-sensitive FHSgel for the first time completely blocks both mainstream and peripheral vessels with totally biocompatible pharmaceutical excipients, and makes a breakthrough in terms of largely reducing the ectopic embolism risk, thus providing a new generation for interventional embolization.
更多
查看译文
关键词
biocompatibility, ectopic embolism, peripheral blockage, temperature&#8208, sensitive hydrogel, transcatheter arterial chemoembolization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要