Can The Granulometric Soil Fractions Attenuate The Radiation Differently From The Whole Soil?

BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY(2021)

引用 4|浏览2
暂无评分
摘要
The purpose of this research was to discriminate soil fractions using mineralogical and elemental analyses and to show those fractions that present greater contribution to the soil mass attenuation coefficient (p) as well as their partial cross-sections for photoelectric absorption (PA), coherent scattering (CS) and incoherent scattering (IS). Soil samples from different places of Brazil classified as Yellow Argisol, Yellow Latosol and Gray Argisol were submitted to elemental and mineralogical analyses through energy dispersive X-ray fluorescence (EDXRF) and Rietveld Method with X-ray diffraction data (RM-XRD). The mixture rule was utilized to calculate mu of each soil. The EDXRF analysis showed as predominant elements Si, Al, Fe and Ti oxides. The highest contents were Si (914.3 to 981.3 g kg(-1)) in the sand fractions, Al (507.9 to 543.7 g kg(-1)) and Fe (32.5 to 76.7 g kg(-1)) in the clay fractions, and Ti (18.0 to 59.0 g kg(-1)) in the silt fractions. The RMXRD allowed identifying that the sand fractions are predominantly made of quartz (913.3 to 995.0 g kg(-1)), while the clay greatest portion is made of kaolinite (465.0 to 660.6 g kg(-1)) and halloysite (169.0 to 385.0 g kg(-1)). The main effect responsible for mu was IS (50 to 61.4%) followed by PA (28 to 40.1%) and CS (9.9 to 10.6%). By using the principal component analysis (PC-1: 57.5% and PC-2: 20.9%), the samples were differentiated through the discrimination between physical, chemical and mineralogical properties. The results obtained suggest that general information about the radiation interaction in soils can be obtained through the elemental and mineralogical analyses of their fractions.
更多
查看译文
关键词
mass attenuation coefficient, XCOM, principal component analysis, Rietveld method, partial cross-Sections
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要