谷歌浏览器插件
订阅小程序
在清言上使用

Reversible Photothermal Modulation Of Electrical Activity Of Excitable Cells Using Polydopamine Nanoparticles

ADVANCED MATERIALS(2021)

引用 42|浏览6
暂无评分
摘要
Advances in the design and synthesis of nanomaterials with desired biophysicochemical properties can be harnessed to develop non-invasive neuromodulation technologies. Here, the reversible modulation of the electrical activity of neurons and cardiomyocytes is demonstrated using polydopamine (PDA) nanoparticles as photothermal nanotransducers. In addition to their broad light absorption and excellent photothermal activity, PDA nanoparticles are highly biocompatible and biodegradable, making them excellent candidates for both in vitro and in vivo applications. The modulation of the activity (i.e., spike rate of the neurons and beating rate of cardiomyocytes) of excitable cells can be finely controlled by varying the excitation power density and irradiation duration. Under optimal conditions, reversible suppression (approximate to 100%) of neural activity and reversible enhancement (two-fold) in the beating rate of cardiomyocytes is demonstrated. To improve the ease of interfacing of photothermal transducers with these excitable cells and enable spatial localization of the photothermal stimulus, a collagen/PDA nanoparticle foam is realized, which can be used as an "add-on patch" for photothermal stimulation. The non-genetic optical neuromodulation approach using biocompatible and biodegradable nanoparticles represents a minimally invasive method for controlling the activity of excitable cells with potential applications in nano-neuroscience and engineering.
更多
查看译文
关键词
light-to-heat conversion, nano-neuro interfaces, neuromodulation, photothermal stimulation, polydopamine nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要