Quantum simulation of operator spreading in the chaotic Ising model

PHYSICAL REVIEW E(2022)

Cited 7|Views17
No score
Abstract
There is great interest in using near-term quantum computers to simulate and study foundational problems in quantum mechanics and quantum information science, such as the scrambling measured by an out-of-time ordered correlator (OTOC). Here we use an IBM Q processor, quantum error mitigation, and weaved Trotter simulation to study high-resolution operator spreading in a four-spin Ising model as a function of space, time, and integrability. Reaching four spins while retaining high circuit fidelity is made possible by the use of a physically motivated fixed-node variant of the OTOC, allowing scrambling to be estimated without overhead. We find clear signatures of a ballistic operator spreading in a chaotic regime, as well as operator localization in an integrable regime. The techniques developed and demonstrated here open up the possibility of using cloud-based quantum computers to study and visualize scrambling phenomena, as well as quantum information dynamics more generally.
More
Translated text
Key words
chaotic ising model,quantum,simulation,operator
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined