Automatic linear measurements of the fetal brain on MRI with deep neural networks

INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY(2021)

Cited 15|Views4
No score
Abstract
Purpose Timely, accurate and reliable assessment of fetal brain development is essential to reduce short and long-term risks to fetus and mother. Fetal MRI is increasingly used for fetal brain assessment. Three key biometric linear measurements important for fetal brain evaluation are cerebral biparietal diameter (CBD), bone biparietal diameter (BBD), and trans-cerebellum diameter (TCD), obtained manually by expert radiologists on reference slices, which is time consuming and prone to human error. The aim of this study was to develop a fully automatic method computing the CBD, BBD and TCD measurements from fetal brain MRI. Methods The input is fetal brain MRI volumes which may include the fetal body and the mother's abdomen. The outputs are the measurement values and reference slices on which the measurements were computed. The method, which follows the manual measurements principle, consists of five stages: (1) computation of a region of interest that includes the fetal brain with an anisotropic 3D U-Net classifier; (2) reference slice selection with a convolutional neural network; (3) slice-wise fetal brain structures segmentation with a multi-class U-Net classifier; (4) computation of the fetal brain midsagittal line and fetal brain orientation, and; (5) computation of the measurements. Results Experimental results on 214 volumes for CBD, BBD and TCD measurements yielded a mean L_1 difference of 1.55 mm, 1.45 mm and 1.23 mm, respectively, and a Bland–Altman 95
More
Translated text
Key words
Fetal brain MRI analysis, Fetal brain development, Fetal brain linear measurements, Deep learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined