Chrome Extension
WeChat Mini Program
Use on ChatGLM

Combination therapy with pazopanib and tivantinib modulates VEGF and c-MET levels in refractory advanced solid tumors.

Investigational new drugs(2021)

Cited 3|Views10
No score
Abstract
The vascular endothelial growth factor (VEGF)/VEGFR and hepatocyte growth factor (HGF)/c-MET signaling pathways act synergistically to promote angiogenesis. Studies indicate VEGF inhibition leads to increased levels of phosphorylated c-MET, bypassing VEGF-mediated angiogenesis and leading to chemoresistance. We conducted a phase 1 clinical trial with 32 patients with refractory solid tumors to evaluate the safety, pharmacokinetics, and pharmacodynamics of combinations of VEGF-targeting pazopanib and the putative c-MET inhibitor ARQ197 (tivantinib) at 5 dose levels (DLs). Patients either took pazopanib and tivantinib from treatment initiation (escalation phase) or pazopanib alone for 7 days, with paired tumor sampling, prior to starting combination treatment (expansion phase). Hypertension was the most common adverse event. No more than 1 dose limiting toxicity (DLT) occurred at any DL, so the maximum tolerated dose (MTD) was not determined; DL5 (800 mg pazopanib daily and 360 mg tivantinib BID) was used during the expansion phase. Twenty of 31 evaluable patients achieved stable disease lasting up to 22 cycles. Circulating VEGF, VEGFR2, HGF, and c-MET levels were assessed, and only VEGF levels increased. Tumor c-MET levels (total and phosphorylated) were determined in paired biopsies before and after 7 days of pazopanib treatment. Total intact c-MET decreased in 6 of 7 biopsy pairs, in contrast to previously reported c-MET elevation in response to VEGF inhibition. These results are discussed in the context of our previously reported analysis of epithelial-mesenchymal transition in these tumors.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined