No2 Gas Sensing Performance Of A Vo2(B) Ultrathin Vertical Nanosheet Array: Experimental And Dft Investigation

ACS APPLIED MATERIALS & INTERFACES(2021)

Cited 29|Views5
No score
Abstract
A VO2 (B) ultrathin vertical nanosheet array was prepared by the hydrothermal method. The influence of the concentration of oxalic acid on the crystal structure and room-temperature NO2 sensing performance was studied. The morphology and crystal structure of the nanosheets were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Room-temperature gas sensing measurements of this structure to NO2 with a concentration span from 0.5 to 5 ppm were carried out. The experimental results showed that the thickness of the vertical VO2(B) nanosheet was lower than 20 nm and close to the 2 times Debye length of VO2(B). The response of the sensor based on this structure to 5 ppm NO2 was up to 2.03, and the detection limit was 20 ppb. Its high response performance was due to the fact that the target gas could completely control the entire conductive path by forming depletion layers on the surface of VO2(B) nanosheets. Density functional theory was used to analyze the adsorption of NO2 on the VO2(B) surface. It is found that the band gap of VO2(B) becomes narrower and the Fermi level moves to the valence band after NO2 adsorption, and the density of states near the Fermi level increases significantly. This ultrathin vertical nanosheet array structure can make VO2(B) detect NO2 with high sensitivity at room temperature and therefore has potential applications in the field of low-power-consumption gas sensors.
More
Translated text
Key words
VO2, hydrothermal, gas sensor, nanosheet, first-principles calculation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined