Chrome Extension
WeChat Mini Program
Use on ChatGLM

Constructing graphs from genetic encodings.

Scientific reports(2021)

Cited 3|Views9
No score
Abstract
Our understanding of real-world connected systems has benefited from studying their evolution, from random wirings and rewirings to growth-dependent topologies. Long overlooked in this search has been the role of the innate: networks that connect based on identity-dependent compatibility rules. Inspired by the genetic principles that guide brain connectivity, we derive a network encoding process that can utilize wiring rules to reproducibly generate specific topologies. To illustrate the representational power of this approach, we propose stochastic and deterministic processes for generating a wide range of network topologies. Specifically, we detail network heuristics that generate structured graphs, such as feed-forward and hierarchical networks. In addition, we characterize a Random Genetic (RG) family of networks, which, like Erdős-Rényi graphs, display critical phase transitions, however their modular underpinnings lead to markedly different behaviors under targeted attacks. The proposed framework provides a relevant null-model for social and biological systems, where diverse metrics of identity underpin a node's preferred connectivity.
More
Translated text
Key words
Biological physics,Complex networks,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined