High-Throughput Sequencing Reveals Genetic Determinants Associated With Antibiotic Resistance In Campylobacter Spp. From Farm-To-Fork

PLOS ONE(2021)

引用 13|浏览1
暂无评分
摘要
Campylobacter species are one of the most common causative agents of gastroenteritis worldwide. Resistance against quinolone and macrolide antimicrobials, the most commonly used therapeutic options, poses a serious risk for campylobacteriosis treatment. Owing to whole genome sequencing advancements for rapid detection of antimicrobial resistance mechanisms, phenotypic and genotypic resistance trends along the "farm-to-fork" continuum can be determined. Here, we examined the resistance trends in 111 Campylobacter isolates (90 C. jejuni and 21 C. coli) recovered from clinical samples, commercial broiler carcasses and dairy products in Cairo, Egypt. Multidrug resistance (MDR) was observed in 10% of the isolates, mostly from C. coli. The prevalence of MDR was the highest in isolates collected from broiler carcasses (13.3%), followed by clinical isolates (10.5%), and finally isolates from dairy products (4%). The highest proportion of antimicrobial resistance in both species was against quinolones (ciprofloxacin and/or nalidixic acid) (68.4%), followed by tetracycline (51.3%), then erythromycin (12.6%) and aminoglycosides (streptomycin and/or gentamicin) (5.4%). Similar resistance rates were observed for quinolones, tetracycline, and erythromycin among isolates recovered from broiler carcasses and clinical samples highlighting the contribution of food of animal sources to human illness. Significant associations between phenotypic resistance and putative gene mutations was observed, with a high prevalence of the gyrA T86I substitution among quinolone resistant isolates, tet(O), tet(W), and tet(32) among tetracycline resistant isolates, and 23S rRNA A2075G and A2074T mutations among erythromycin resistant isolates. Emergence of resistance was attributed to the dissemination of resistance genes among various lineages, with the dominance of distinctive clones. For example, sub-lineages of CC828 in C. coli and CC21 in C. jejuni and the genetically related clonal complexes 'CC206 and CC48' and 'CC464, CC353, CC354, CC574', respectively, propagated across different niches sharing semi-homogenous resistance patterns.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要