谷歌浏览器插件
订阅小程序
在清言上使用

Time-resolved X-Ray Diffraction and Photoelectron Spectroscopy Investigation of the Reactive Molecular Beam Epitaxy of Fe3O4 Ultrathin Films

Physical review B/Physical review B(2022)

引用 2|浏览13
暂无评分
摘要
We present time-resolved high energy x-ray diffraction (tr-HEXRD), time-resolved hard x-ray photoelectron spectroscopy (tr-HAXPES) and time-resolved grazing incidence small angle x-ray scattering (tr-GISAXS) data of the reactive molecular beam epitaxy (RMBE) of Fe3O4 ultrathin films on various substrates. Reciprocal space maps are recorded during the deposition of Fe3O4 on SrTiO3(001), MgO(001) and NiO/MgO(001) in order to observe the temporal evolution of Bragg reflections sensitive to the octahedral and tetrahedral sublattices of the inverse spinel structure of Fe3O4. A time delay between the appearance of rock salt and spinel-exclusive reflections reveals that first, the iron oxide film grows with Fe1-δO rock salt structure with exclusive occupation of octahedral lattice sites. When this film is 1.1 nm thick, the further growth of the iron oxide film proceeds in the inverse spinel structure, with both octahedral and tetrahedral lattice sites being occupied. In addition, iron oxide on SrTiO3(001) initially grows with none of these structures. Here, the formation of the rock salt structure starts when the film is 1.5 nm thick. This is confirmed by tr-HAXPES data obtained during growth of iron oxide on SrTiO3(001), which demonstrate an excess of Fe cations in growing films thinner than 3.2 nm. This rock salt phase only appears during growth and vanishes after the supply of the Fe molecular beam is stopped. Thus, it can be concluded the rock salt structure of the interlayer is a property of the dynamic growth process. The tr-GISAXS data link these structural results to an island growth mode of the first 2− 3 nm on both MgO(001) and SrTiO3(001) substrates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要