谷歌浏览器插件
订阅小程序
在清言上使用

Electroacupuncture Promotes The Recovery Of Rats With Spinal Cord Injury By Suppressing The Notch Signaling Pathway Via The H19/ Ezh2 Axis

ANNALS OF TRANSLATIONAL MEDICINE(2021)

引用 5|浏览7
暂无评分
摘要
Background: Spinal cord injury (SCI) is a life-changing event with an extremely poor prognosis. In our preliminary studies, electroacupuncture (EA) was found to promote the repair of SCI, which was closely related to the Notch signaling pathway. Therefore, in the present study, we hypothesized that EA protects against SCI by inhibiting the Notch signaling pathway and sought to investigate the underlying molecular mechanisms.Methods: Rat and cell models of SCI were established. The expression of long non-coding RNA H19 was measured by real-time quantitative polymerase chain reaction. The expression levels of EZH2, Notch1, Notch3, Notch4, Hes1, and PS1 protein were measured by western blot. Cell apoptosis and viability were analyzed using flow cytometry and Cell Counting Kit-8 assays, respectively. The expressions of glial fibrillary acidic protein (GFAP) and nestin were detected by immunofluorescence staining.Results: The expressions of H19, EZH2, and GFAP were significantly increased after SCI but were inhibited by EA; in contrast, nestin expression was significantly decreased by SCI but was restored by EA. Moreover, oxygen-glucose deprivation (OGD) treatment elevated the expression of H19, EZH2, and Notch related factors as well as apoptosis in PC-12 cells, while suppressing cell viability. Suppressing H19 alleviated the effects of OGD on cell viability and apoptosis, and inhibited the expression of EZH2 and Notch-related factors expression; these effects were reversed by EZH2 overexpression. Finally, EA promoted the recovery of SCI rats and neural stem cell (NSC) proliferation by inhibiting the Notch signaling pathway, which was reversed by H19 overexpression.Conclusions: Our results demonstrated that EA promotes the recovery of SCI rats and increases the proliferation and differentiation of NSCs by suppressing the Notch signaling pathway via modulating the H19/EZH2 axis.
更多
查看译文
关键词
Electroacupuncture (EA), spinal cord injury (SCI), lncRNA H19, EZH2, Notch signaling pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要