Anti-Inflammatory Nanoparticles Significantly Improve Muscle Function In A Murine Model Of Advanced Muscular Dystrophy

SCIENCE ADVANCES(2021)

引用 24|浏览3
暂无评分
摘要
Chronic inflammation contributes to the pathogenesis of all muscular dystrophies. Inflammatory T cells damage muscle, while regulatory T cells (T-regs) promote regeneration. We hypothesized that providing anti-inflammatory cytokines in dystrophic muscle would promote proregenerative immune phenotypes and improve function. Primary T cells from dystrophic (mdx) mice responded appropriately to inflammatory or suppressive cytokines. Subsequently, interleukin-4 (IL-4)- or IL-10-conjugated gold nanoparticles (PA4, PA10) were injected into chronically injured, aged, mdx muscle. PA4 and PA10 increased T cell recruitment, with PA4 doubling CD4(+)/CD8(-) T cells versus controls. Further, 50% of CD4(+)/CD8(-) T cells were immunosuppressive T-regs following PA4, versus 20% in controls. Concomitant with T-reg recruitment, muscles exhibited increased fiber area and fourfold increases in contraction force and velocity versus controls. The ability of PA4 to shift immune responses, and improve dystrophic muscle function, suggests that immunomodulatory treatment may benefit many genetically diverse muscular dystrophies, all of which share inflammatory pathology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要