Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel

Acta Biomaterialia(2021)

引用 14|浏览2
暂无评分
摘要
Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli through cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), thereby reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report the insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of Sortase A, a mammalian-inert enzyme. Notably, Sortase A exposure preserves stem cell surface markers, which are an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to produce artificial stem cell niches with tunable biophysical properties, intrinsic cell-interaction motifs, and orthogonal addition of bioactive crosslinks.
更多
查看译文
关键词
Stem cells,Gelatin hydrogels,Reactive oxygen species,Hematopoietic stem cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要