Terahertz non-label subwavelength imaging with composite photonics-plasmonics structured illumination

OPTICS EXPRESS(2021)

引用 3|浏览6
暂无评分
摘要
Inspired by the capability of structured illumination microscopy (SIM) in subwavelength imaging, many researchers devoted themselves to investigating this methodology. However, due to the free-propagating feature of the traditional structured illumination fields, the resolution can be only improved up to two-fold of the diffraction-limited microscopy. Besides, most of the previous studies, relying on incoherent illumination sources, are restricted to fluorescent samples. In this work, a subwavelength non-fluorescent imaging method is proposed based on the illumination of terahertz traveling waves and plasmonics. Excited along with a metal grating, the spoof surface plasmons (SSPs) are employed as one of the illuminating sources. When the scattering waves with the SSPs illumination are captured, the sample's high-order spatial frequencies (SF) components are already encoded into the obtainable low-order ones. Then, a modified post-processing algorithm is exploited to shift the modulated SF components to their actual positions in the SF domain. In this manner, the fine information of samples is introduced to reconstruct the desired imaging, leading to an enhancement of the resolution up to 0.124. Encouragingly, the resolution can be further enhanced by attaching extra illumination of SSPs with an elaborately selected frequency. This method holds promise for some important applications in terahertz non-fluorescent microscopy and sample detection with weak scattering. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要