Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaete sordida YK-624 on native lignin.

Journal of bioscience and bioengineering(2021)

引用 9|浏览3
暂无评分
摘要
Lignocellulosic biomass is an organic matrix composed of cellulose, hemicellulose, and lignin. In nature, lignin degradation by basidiomycetes is the key step in lignocellulose decay. The white-rot fungus Phanerochaete sordida YK-624 (YK-624) has been extensively studied due to its high lignin degradation ability. It was demonstrated that YK-624 can secrete lignin peroxidase and manganese peroxidase for lignin degradation. However, the underlying mechanism for lignin degradation by YK-624 remains unknown. Here, we analyzed YK-624 gene expression following growth under ligninolytic and nonligninolytic conditions and compared the differentially expressed genes in YK-624 to those in the model white-rot fungus Phanerochaete chrysosporium by next-generation sequencing. More ligninolytic enzymes and lignin-degrading auxiliary enzymes were upregulated in YK-624. This might explain the high degradation efficiency of YK-624. In addition, the genes involved in energy metabolism pathways such as the TCA cycle, lipid metabolism, carbon metabolism and glycolysis were upregulated under ligninolytic conditions in YK-624. The first differential gene expression analysis of YK-624 under ligninolytic and nonligninolytic conditions was reported in this study. The results obtained in this study indicated that YK-624 produces more enzymes involved in lignin degradation and energy metabolism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要