From The Eigenstate Thermalization Hypothesis To Algebraic Relaxation Of Otocs In Systems With Conserved Quantities

PHYSICAL REVIEW B(2021)

引用 8|浏览5
暂无评分
摘要
The relaxation of out-of-time-ordered correlators (OTOCs) has been studied as a means to characterize the scrambling properties of a quantum system. We show that the presence of local conserved quantities typically results in, at the fastest, an algebraic relaxation of the OTOC provided (i) the dynamics is local and (ii) the system follows the eigenstate thermalization hypothesis. Our result relies on the algebraic scaling of the infinite-time value of OTOCs with system size, which is typical in thermalizing systems with local conserved quantities, and on the existence of finite speed of propagation of correlations for finite-range-interaction systems. We show that time independence of the Hamiltonian is not necessary as the above conditions (i) and (ii) can occur in time-dependent systems, both periodic or aperiodic. We also remark that our result can be extended to systems with power-law interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要