Scaffold-Mediated Crispr-Cas9 Delivery System For Acute Myeloid Leukemia Therapy

SCIENCE ADVANCES(2021)

引用 48|浏览20
暂无评分
摘要
Leukemia stem cells (LSCs) sustain the disease and contribute to relapse in acute myeloid leukemia (AML). Therapies that ablate LSCs may increase the chance of eliminating this cancer in patients. To this end, we used a bioreducible lipidoid-encapsulated Cas9/single guide RNA (sgRNA) ribonucleo-protein [lipidoid nanoparticle (LNP)-Cas9 RNP] to target the critical gene interleukin-1 receptor accessory protein (IL1RAP) in human LSCs. To enhance LSC targeting, we loaded LNP-Cas9 RNP and the chemokine CXCL12 alpha onto mesenchymal stem cell membrane-coated nanofibril (MSCM-NF) scaffolds mimicking the bone marrow microenvironment. In vitro, CXCL12 alpha release induced migration of LSCs to the scaffolds, and LNP-Cas9 RNP induced efficient gene editing. IL1RAP knockout reduced LSC colony-forming capacity and leukemic burden. Scaffold-based delivery increased the retention time of LNP-Cas9 in the bone marrow cavity. Overall, sustained local delivery of Cas9/IL1RAP sgRNA via CXCL12 alpha-loaded LNP/MSCM-NF scaffolds provides an effective strategy for attenuating LSC growth to improve AML therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要