Statistical behaviour of interfaces subjected to curvature flow and torque effects applied to microstructural evolutions

S Florez,K Alvarado, B Murgas,N Bozzolo, D Chatain, CE Krill III

ArXiv(2022)

Cited 10|Views0
No score
Abstract
The movement of grain boundaries in pure metals and alloys with a low concentration of dislocations has been historically proved to follow curvature flow behaviour. This mechanism is typically known as grain growth (GG). However, recent 3D in-situ experimental results tend to question this global picture concerning the influence of the curvature on the kinetics of interface migration. This article explains, thanks to 2D anisotropic full-field simulations, how the torque effects can complicate these discussions. It is then illustrated that neglecting torque effects in full-field formulations can have a significant effect on the overall rate of GG, the shape of grains and grain boundaries as well as their local kinetics. The apparent reduced mobility can be much more complex than expected without necessarily questioning the influence of the curvature on the local kinetic equation.
More
Translated text
Key words
Grain growth,Anisotropy,Torque effects,Reduced mobility,Curvature flow
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined