Anthropometry-Based Prediction Of Body Composition In Early Infancy Compared To Air-Displacement Plethysmography

PEDIATRIC OBESITY(2021)

引用 4|浏览8
暂无评分
摘要
Background Anthropometry-based equations are commonly used to estimate infant body composition. However, existing equations were designed for newborns or adolescents. We aimed to (a) derive new prediction equations in infancy against air-displacement plethysmography (ADP-PEA Pod) as the criterion, (b) validate the newly developed equations in an independent infant cohort and (c) compare them with published equations (Slaughter-1988, Aris-2013, Catalano-1995).Methods Cambridge Baby Growth Study (CBGS), UK, had anthropometry data at 6 weeks (N = 55) and 3 months (N = 64), including skinfold thicknesses (SFT) at four sites (triceps, subscapular, quadriceps and flank) and ADP-derived total body fat mass (FM) and fat-free mass (FFM). Prediction equations for FM and FFM were developed in CBGS using linear regression models and were validated in Sophia Pluto cohort, the Netherlands, (N = 571 and N = 447 aged 3 and 6 months, respectively) using Bland-Altman analyses to assess bias and 95% limits of agreement (LOA).Results CBGS equations consisted of sex, age, weight, length and SFT from three sites and explained 65% of the variance in FM and 79% in FFM. In Sophia Pluto, these equations showed smaller mean bias than the three published equations in estimating FM: mean bias (LOA) 0.008 (-0.489, 0.505) kg at 3 months and 0.084 (-0.545, 0.713) kg at 6 months. Mean bias in estimating FFM was 0.099 (-0.394, 0.592) kg at 3 months and -0.021 (-0.663, 0.621) kg at 6 months.Conclusions CBGS prediction equations for infant FM and FFM showed better validity in an independent cohort at ages 3 and 6 months than existing equations.
更多
查看译文
关键词
body composition,early infancy,plethysmography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要