Inhibition of Pim-2 kinase by LT-171-861 promotes DNA damage and exhibits enhanced lethal effects with PARP inhibitor in multiple myeloma

BIOCHEMICAL PHARMACOLOGY(2021)

Cited 2|Views8
No score
Abstract
Multiple myeloma (MM) is a malignancy of antibody-producing plasma cells with genomic instability and genetic abnormality as its two hallmarks. Therefore, DNA damage is pervasive in MM cells, which indicates irregular DNA damage response (DDR) pathway. In this study, we demonstrated that LT-171-861, a multiple kinase inhibitor, could inhibit proliferation and induce apoptosis in MM cells. LT-171-861 promoted DDR pathway and triggered DNA damage through impeding the process of homologous recombination in double strand breaks, rather than directly elevating ROS level in MM cells. Mechanism research revealed that Pim2 inhibition was responsible for LT-171-861-indcued DNA damage and cell apoptosis. LT-171-861 mainly suppressed Pim2 kinase activity and reduced the expression of its phosphorylated substrates, such as 4EBP1 and BAD. Moreover, Olaparib, a PARP inhibitor, could enhance the antitumor effect of LT-171-861 in suppressing tumor growth in MM xenografted nude mice. Taken together, our results demonstrated that LT-171-861 showed a promising therapeutic potential for MM and had an additional lethal effect with PARP inhibitors.
More
Translated text
Key words
Multiple myeloma, Apoptosis, Pim2, DNA damage response
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined