Positron Emission Tomography And Magnetic Resonance Imaging In Experimental Human Malaria To Identify Organ-Specific Changes In Morphology And Glucose Metabolism: A Prospective Cohort Study

PLOS MEDICINE(2021)

引用 7|浏览14
暂无评分
摘要
BackgroundPlasmodium vivax has been proposed to infect and replicate in the human spleen and bone marrow. Compared to Plasmodium falciparum, which is known to undergo microvascular tissue sequestration, little is known about the behavior of P. vivax outside of the circulating compartment. This may be due in part to difficulties in studying parasite location and activity in life.Methods and findings To identify organ-specific changes during the early stages of P. vivax infection, we performed 18-F fluorodeoxyglucose (FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) at baseline and just prior to onset of clinical illness in P. vivax experimentally induced blood-stage malaria (IBSM) and compared findings to P. falciparum IBSM. Seven healthy, malaria-naive participants were enrolled from 3 IBSM trials: NCT02867059, ACTRN12616000174482, and ACTRN12619001085167. Imaging took place between 2016 and 2019 at the Herston Imaging Research Facility, Australia. Postinoculation imaging was performed after a median of 9 days in both species (n = 3 P. vivax; n = 4 P. falciparum). All participants were aged between 19 and 23 years, and 6/7 were male. Splenic volume (P. vivax: +28.8% [confidence interval (CI) +10.3% to +57.3%], P. falciparum: +22.9 [CI -15.3% to +61.1%]) and radiotracer uptake (P. vivax: +15.5% [CI -0.7% to +31.7%], P. falciparum: +5.5% [CI +1.4% to +9.6%]) increased following infection with each species, but more so in P. vivax infection (volume: p = 0.72, radiotracer uptake: p = 0.036). There was no change in FDG uptake in the bone marrow (P. vivax: +4.6% [CI -15.9% to +25.0%], P. falciparum: +3.2% [CI -3.2% to +9.6%]) or liver (P. vivax: +6.2% [CI -8.7% to +21.1%], P. falciparum: -1.4% [CI -4.6% to +1.8%]) following infection with either species. In participants with P. vivax, hemoglobin, hematocrit, and platelet count decreased from baseline at the time of postinoculation imaging. Decrements in hemoglobin and hematocrit were significantly greater in participants with P. vivax infection compared to P. falciparum. The main limitations of this study are the small sample size and the inability of this tracer to differentiate between host and parasite metabolic activity.Conclusions PET/MRI indicated greater splenic tropism and metabolic activity in early P. vivax infection compared to P. falciparum, supporting the hypothesis of splenic accumulation of P. vivax very early in infection. The absence of uptake in the bone marrow and liver suggests that, at least in early infection, these tissues do not harbor a large parasite biomass or do not provoke a prominent metabolic response. PET/MRI is a safe and noninvasive method to evaluate infection-associated organ changes in morphology and glucose metabolism.Author summaryWhy was this study done?In contrast to , blood-stage is not traditionally thought to accumulate outside of the circulating blood compartment. Emerging data suggest that a hidden compartment of . may exist outside of circulation, in reticulocyte (very young red blood cells)-containing organs. The presence of a hidden compartment affects our understanding of the basic biology and pathology of this common parasite and may have implications when developing antimalarial treatments. Studying the accumulation of malaria parasites is extremely challenging in vivo and has historically been limited to late stage disease and postmortem studies.What did the researchers do and find?We performed whole body magnetic resonance imaging (MRI) and positron emission tomography (PET) in individuals undergoing experimental malaria infection to identify changes in organ morphology and glucose metabolism following infection. Splenic uptake of radiolabeled glucose increased following . and . infection and was more pronounced in the . group. Glucose uptake in the liver and bone marrow was not increased following infection with either . or . .What do these findings mean?Increased splenic glucose metabolism is present in the early stages of infection with both . and . and is more pronounced in . , consistent with other emerging evidence of a greater predilection for the spleen in . than . . Functional medical imaging may be a useful tool to study biological processes in experimental malaria infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要