Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters.

Ultrasonics(2021)

引用 6|浏览3
暂无评分
摘要
Acoustic wave propagation in ultrasonic flow measurements is typically assumed to be linear and reciprocal. However, if the transmitting transducer generates a sufficiently high pressure, nonlinear wave propagation effects become significant. In flow measurements, this would translate into more information to estimate the flow and therefore a higher precision relative to the linear case. In this work, we investigate how the generated harmonics can be used to measure flow. Measurements in a custom-made flow loop and simulations using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation will show that the second harmonic component provides similar transit time differences to those obtained from the fundamental component, their linear combination results in more precise flow measurements compared to the estimations with the fundamental component alone.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要