PD-L1 recruits phospholipase C and enhances tumorigenicity of lung tumors harboring mutant forms of EGFR.

Cell reports(2021)

Cited 24|Views20
No score
Abstract
Cancer immunotherapy focuses on inhibitors of checkpoint proteins, such as programmed death ligand 1 (PD-L1). Unlike RAS-mutated lung cancers, EGFR mutant tumors have a generally low response to immunotherapy. Because treatment outcomes vary by EGFR allele, intrinsic and microenvironmental factors may be involved. Among all non-immunological signaling pathways surveyed in patients' datasets, EGFR signaling is best associated with high PD-L1. Correspondingly, active EGFRs stabilize PD-L1 transcripts and depletion of PD-L1 severely inhibits EGFR-driven tumorigenicity and metastasis in mice. The underlying mechanisms involve the recruitment of phospholipase C-γ1 (PLC-γ1) to a cytoplasmic motif of PD-L1, which enhances PLC-γ1 activation by EGFR. Once stimulated, PLC-γ1 activates calcium flux, Rho GTPases, and protein kinase C, collectively promoting an aggressive phenotype. Anti-PD-L1 antibodies can inhibit these intrinsic functions of PD-L1. Our results portray PD-L1 as a molecular amplifier of EGFR signaling and improve the understanding of the resistance of EGFR+ tumors to immunotherapy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined