When A "Dimroth Rearrangement" Is Not A Dimroth Rearrangement

JOURNAL OF ORGANIC CHEMISTRY(2021)

引用 8|浏览9
暂无评分
摘要
In the Dimroth rearrangement of heterocycles, often pyrimidines, an exocyclic and a ring substituent are interchanged. However, the term Dimroth rearrangement is frequently used even when there is no knowledge of the reaction mechanism and alternatives are likely. Here, we have employed density functional theory (DFT) calculations at the M06-2X/6-311+G(d,p) level to determine the most plausible rearrangement pathways of 3-aminothiocarbonylquinazoline 5, tetrahydrofuranylpyrimidine 21, and 5-allyltriazocine 30. For the rearrangement of quinazoline 5 to 9, the [1,3]sigmatropic shift of the thioamido group with an activation barrier of 26.7 kcal/mol is much preferred over the Dimroth rearrangement (similar to 46 kcal/mol). An even lower barrier of 21.6 kcal/mol applies to a stepwise [1,3]-shift. The migration of the tetrahydrofuranyl unit in pyrimidines like 21 -> 23 can take place by means of a [1,3]-sigmatropic shift with a low barrier (<= 17.5 kcal/mol) rather than a Dimroth rearrangement under acidic conditions and most likely also under neutral conditions (similar to 30 kcal/mol). In the rearrangement of 5-allyl-6-iminotriazocine 30 to 32, the [3,3]-sigmatropic shift (aza-Cope rearrangement) is preferred over the Dimroth mechanism under neutral conditions, but in the presence of acid, the azonia-Cope rearrangement of an allyl group and the true Dimroth rearrangement have comparable activation energies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要