Quaternary Oxidized Carbon Nanohorns—Based Nanohybrid as Sensing Coating for Room Temperature Resistive Humidity Monitoring

THE Coatings(2021)

引用 4|浏览6
暂无评分
摘要
We report the relative humidity (RH) sensing response of a resistive sensor, employing sensing layers, based on a quaternary organic–inorganic hybrid nanocomposite comprising oxidized carbon nanohorns (CNHox), graphene oxide (GO), tin dioxide, and polyvinylpyrrolidone (PVP), at 1/1/1/1 and 0.75/0.75/1/1/1 mass ratios. The sensing structure comprises a silicon substrate, a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensing film was deposited via the drop-casting method on the sensing structure. The morphology and the composition of the sensing layers were investigated through Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and RAMAN spectroscopy. The organic–inorganic quaternary hybrid-based thin film’s resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%. The manufactured devices show a room temperature response comparable to that of a commercial capacitive humidity sensor and characterized by excellent linearity, rapid response and recovery times, and good sensitivity. While the sensor with CNHox/GO/SnO2/PVP at 0.75/0.75/1/1 as the sensing layer has the best performance in terms of linearity and recovery time, the structures employing the CNHox/GO/SnO2/PVP at 1/1/1/1 (mass ratio) have a better performance in terms of relative sensitivity. We explained each constituent of the quaternary hybrid nanocomposites’ sensing role based on their chemical and physical properties, and mutual interactions. Different alternative mechanisms were taken into consideration and discussed. Based on the sensing results, we presume that the effect of the p-type semiconductor behavior of CNHox and GO, correlated with swelling of PVP, dominates and leads to the overall increasing resistance of the sensing layer. The hard–soft acid–base (HSAB) principle also supports this mechanism.
更多
查看译文
关键词
oxidized carbon nanohorns (CNHox), graphene oxide (GO), polyvinylpyrrolidone (PVP), organic&#8211, inorganic hybrid, resistive RH sensor, SnO2, HSAB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要