Chrome Extension
WeChat Mini Program
Use on ChatGLM

Graphene-Coated Highly Sensitive Photonic Crystal Fiber Surface Plasmon Resonance Sensor for Aqueous Solution: Design and Numerical Analysis

PHOTONICS(2021)

Cited 18|Views3
No score
Abstract
This paper presents the design and analysis of a surface plasmon resonance (SPR) sensor in a photonic crystal fiber (PCF) platform, where graphene is used externally to attain improved sensing performance for an aqueous solution. The performance of the proposed sensor was analyzed using the finite element method-based simulation tool COMSOL Multiphysics. According to the simulation results, the proposed sensor exhibits identical linear characteristics as well as a very high figure of merit (FOM) of 2310.11 RIU-1 in the very low detection limit of 10(-3). The analysis also reveals the maximum amplitude sensitivity of 14,847.03 RIU-1 and 7351.82 RIU-1 for the x and y polarized modes, respectively, which are high compared to several previously reported configurations. In addition, the average wavelength sensitivity is 2000 nm/RIU which is comparatively high for the analyte refractive index (RI) ranging from 1.331 to 1.339. Hence, it is highly expected that the proposed PCF-based SPR sensor can be a suitable candidate in different sensing applications, especially for aqueous solutions.
More
Translated text
Key words
surface plasmon polariton (SPP),finite element method,photonic crystal fiber,graphene,refractive index (RI) sensor,optical fiber sensor,surface plasmon resonance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined