Monolayer Hexagonal Boron Nitride: An Efficient Electron Blocking Layer In Organic Photovoltaics

ADVANCED FUNCTIONAL MATERIALS(2021)

Cited 6|Views4
No score
Abstract
In this study, monolayer hexagonal boron nitride (h-BN) grown via chemical vapor deposition (CVD) as an effective electron blocking layer (EBL) for the organic photovoltaics (OPVs) is proposed. Unexpectedly, it is found that h-BN can replace the commonly used hole transport layers (HTLs), i.e., molybdenum trioxide (MoO3) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in an inverted device architecture. Here, a wet-transfer technique is employed and a single layer of h-BN on top of the PV2000:PC60BM blend is successfully placed. Analysis of the bandgap diagram shows that the monolayer h-BN makes smaller barrier for holes but significantly larger barrier for electrons. This makes the h-BN effective in blocking electrons while creating a possible path for the holes through tunneling to the electrode, due to the low energy barrier at the PV2000/h-BN interface. Using h-BN as an EBL, efficient inverted OPVs are achieved with an average solar-to-power conversion efficiency of 6.13%, which is comparable with that of reference devices based on MoO3 (7.3%) and PEDOT:PSS (7.6%) as HTLs. Interestingly, the devices with h-BN shows great light-soak stability. The study reveals that the monolayer h-BN grown by CVD could be an effective alternative EBL for the fabrication of efficient, lightweight, and stable OPVs.
More
Translated text
Key words
device stability, electron blocking layer, hexagonal boron nitride, organic photovoltaics, power conversion efficiency, solar cell
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined