Joint Cache Size Scaling and Replacement Adaptation for Small Content Providers

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications(2021)

Cited 13|Views33
No score
Abstract
Elastic Content Delivery Networks (Elastic CDNs) have been introduced to support explosive Internet traffic growth by providing small Content Providers (CPs) with just-in-time services. Due to the diverse requirements of small CPs, they need customized adaptive caching modules to help them adjust the cached contents to maximize their long-term utility. The traditional adaptive caching module is usually a built-in service in a cloud CDN. They adaptively change cache contents using size-scaling-only methods or strategy-adaptation-only methods. A natural question is: can we jointly optimize size and strategy to achieve tradeoff and better performance for small CPs when renting services from elastic CDNs? The problem is challenging because the two decision variables could involve both discrete and categorical variables, where discrete variables have an intrinsic order while categorical variables do not. In this paper, we propose a distribution-guided reinforcement learning framework JEANA to learn the joint cache size scaling and strategy adaptation policy. We design a distribution-guided regularizer to keep the intrinsic order of discrete variables. More importantly, we prove that our algorithm has a theoretical guarantee of performance improvement. Trace-driven experimental results demonstrate our method can improve the hit ratio while reducing the rental cost.
More
Translated text
Key words
elastic content delivery networks,caching,deep reinforcement learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined