Investigating alterations in the cellular envelope of Staphylococcus aureus in simulated microgravity using a random positioning machine

Life Sciences in Space Research(2021)

引用 5|浏览0
暂无评分
摘要
Continuous rotation of liquid bacterial culture in random positioning machine (RPM) causes formation of a colloidal bacterial culture in the culture tube, due to lack of sedimentation and convection. Interestingly, similar colloidal bacterial cultures can also be seen in suspended bacterial cultures in a spaceflight environment. Thus, as a consequence of no sedimentation, an alteration in the microenvironment of each bacterial cell in simulated microgravity is introduced, compared to the bacterial culture grown in normal gravity wherein they sediment slowly at the bottom of the culture tube. Apparently, a bacterial cell can sense changes in its environment through various receptors and sensors present at its surface, thus it can be speculated that this change in its microenvironment might induce changes in its cell wall and cell surface properties. In our study, changes in growth kinetics, cell wall constitution using FTIR (Fourier Transform Infrared Spectroscopy), cell surface hydrophobicity, autoaggregation ability and antibiotic susceptibility of Staphylococcus aureus NCIM 2079 strain, in simulated microgravity (using RPM) was studied in detail. Noteworthy alterations in its growth kinetics, cell wall constitution, cell surface hydrophobicity, autoaggregation ability and antibiotic susceptibility especially to Erythromycin and Clindamycin were observed. Our data suggests that microgravity may cause alterations in the cellular envelope of planktonic S.aureus cultures.
更多
查看译文
关键词
Random positioning machine (RPM),S. aureus,Simulated microgravity,Cellular envelope
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要