Advanced controller synthesis for fuzzy parameter varying systems

Journal of the Franklin Institute(2022)

Cited 1|Views16
No score
Abstract
A novel nonlinear time-varying model termed as the fuzzy parameter varying (FPV) system is proposed in this research, which inherits both advantages of the conventional T-S fuzzy system in dealing with nonlinear plants and strengths of the linear parameter varying (LPV) system in handling time-varying features. It is, therefore, an attractive mathematical model to efficiently approximate a nonlinear time-varying plant or to serve as a type of time-varying controller. Using the full block S-procedure, sufficient stability conditions have been derived in the form of linear matrix inequalities (LMIs) to test quadratic stability of the open-loop FPV system. Moreover, sufficient conditions have been derived on synthesizing both state feedback and dynamical output feedback fuzzy gain-scheduling controllers that can stabilize the FPV system. An inverted pendulum with a variable length pole is utilized to demonstrate advantages of the FPV system compared to the conventional T-S fuzzy system in representing a practical time-varying nonlinear plant and to validate the controller synthesis conditions.
More
Translated text
Key words
advanced controller synthesis,fuzzy parameter
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined