3d Distance Measurement From A Camera To A Mobile Vehicle, Using Monocular Vision

JOURNAL OF SENSORS(2021)

Cited 4|Views5
No score
Abstract
Estimation of distance from objects in real-world scenes is an important topic in several applications such as navigation of autonomous robots, simultaneous localization and mapping (SLAM), and augmented reality (AR). Even though there is a technology for this purpose, in some cases, this technology has some disadvantages. For example, GPS systems are susceptible to interference, especially in places surrounded by buildings, under bridges or indoors; alternatively, RGBD sensors can be used, but they are expensive, and their operational range is limited. Monocular vision is a low-cost suitable alternative that can be used indoor and outdoor. However, monocular odometry is challenging because the object location can be known up a scale factor. Moreover, when objects are moving, it is necessary to estimate the location from consecutive images accumulating error. This paper introduces a new method to compute the distance from a single image of the desired object, with known dimensions, captured with a monocular calibrated vision system. This method is less restrictive than other proposals in the state-of-the-art literature. For the detection of interest points, a Region-based Convolutional Neural Network combined with a corner detector were used. The proposed method was tested on a standard dataset and images acquired by a low-cost and low-resolution webcam, under noncontrolled conditions. The system was tested and compared with a calibrated stereo vision system. Results showed the similar performance of both systems, but the monocular system accomplished the task in less time.
More
Translated text
Key words
3d distance measurement,camera,mobile vehicle
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined