Chrome Extension
WeChat Mini Program
Use on ChatGLM

Structural and Photodynamic Studies on Nitrosylruthenium-Complexed Serum Albumin as a Delivery System for Controlled Nitric Oxide Release

INORGANIC CHEMISTRY(2021)

Cited 10|Views15
No score
Abstract
How to deliver nitric oxide (NO) to a physiological target and control its release quantitatively is a key issue for biomedical applications. Here, a water-soluble nitrosylruthenium complex, [(CH3)(4)N][RuCl3(5cqn)(NO)] (H5cqn = 5-chloro-8-quinoline), was synthesized, and its structure was confirmed with H-1 NMR and X-ray crystal diffraction. Photoinduced NO release was investigated with time-resolved Fourier transform infrared and electron paramagnetic resonance (EPR) spectroscopies. The binding constant of the [RuCl3(5cqn)(NO)]complex with human serum albumin (HSA) was determined by fluorescence spectroscopy, and the binding mode was identified by X-ray crystallography of the HSA and Ru-NO complex adduct. The crystal structure reveals that two molecules of the Ru-NO complex are located in the subdomain IB, which is one of the major drug binding regions of HSA. The chemical structures of the Ru complexes were [RuCl3(5cqn)(NO)](-) and [RuCl3(Glycerin)NO](-), in which the electron densities for all ligands to Ru are unambiguously identified. EPR spin-trapping data showed that photoirradiation triggered NO radical generation from the HSA complex adduct. Moreover, the near-infrared image of exogenous NO from the nitrosylruthenium complex in living cells was observed using a NO-selective fluorescent probe. This study provides a strategy to design an appropriate delivery system to transport NO and metallodrugs in vivo for potential applications.
More
Translated text
Key words
nitric oxide,photodynamic studies,albumin,nitrosylruthenium-complexed
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined