Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation

arxiv(2021)

引用 0|浏览8
暂无评分
摘要
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts. However, millions of interacting qubits with stringent criteria are required, which is intractable with current quantum technologies. As it would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals. Matrix exponentiation, especially hermitian matrix exponentiation, is an essential element for quantum information processing. In this article, a heuristic method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit(PQC). To generate PQCs for simulations, two strategies, each with its own advantages, are proposed, and can be deployed on near future quantum devices. Compared with the method such as product formula and density matrix exponentiation, the PQCs provided in our method require only low depth circuit and easily accessible gates, which benefit experimental realizations. Furthermore, in this paper, an ancilla-assisted parameterized quantum circuit is proposed to characterize and compress a unitary process, which is likely to be applicable to realizing applications on NISQ hardwares, such as phase estimation, principal component analyses, and matrix inversion. To support the feasibility of our method, numerical experiments were investigated via simulating evolutions by Bell state, GHZ state and Hamiltonian of Crotonic acid, which show an experimental friendly result when compared with their conventional methods. As pursuing a fault-tolerant quantum computer is still challenging and takes decades, our work, which gives a NISQ device friendly way, contributes to the field of NISQ algorithms and provides a possibility, exploiting the power with current quantum technology.
更多
查看译文
关键词
simulate hermitian matrix exponentiation,nisq algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要