Computational design of single-stranded DNA hairpin aptamers immobilized on a biosensor substrate

SCIENTIFIC REPORTS(2021)

引用 9|浏览0
暂无评分
摘要
Aptamer interactions with a surface of attachment are central to the design and performance of aptamer-based biosensors. We have developed a computational modeling approach to study different system designs—including different aptamer-attachment ends, aptamer surface densities, aptamer orientations, and solvent solutions—and applied it to an anti MUC1 aptamer tethered to a silica biosensor substrate. Amongst all the system designs explored, we found that attaching the anti MUC1 aptamer through the 5′ terminal end, in a high surface density configuration, and solvated in a 0.8 M NaCl solution provided the best exposure of the aptamer MUC1 binding regions and resulted in the least amount of aptamer backbone fluctuations. Many of the other designs led to non-functional systems, with the aptamer collapsing onto the surface. The computational approach we have developed and the resulting analysis techniques can be employed for the rational design of aptamer-based biosensors and provide a valuable tool for improving biosensor performance and repeatability .
更多
查看译文
关键词
Computational biophysics,DNA nanostructures,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要