Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles

NATURE CHEMISTRY(2021)

引用 60|浏览17
暂无评分
摘要
Platinum functions exceptionally well as a nanoparticulate catalyst in many important fields, such as in the removal of atmospheric pollutants, but it is scarce, expensive and not always sufficiently durable. Here, we report a perovskite system in which 0.5 wt% Pt is integrated into the support and its subsequent conversion through exsolution to achieve a resilient catalyst. Owing to the instability of most Pt oxides at high temperatures, a thermally stable platinum oxide precursor, barium platinate, was used to preserve the platinum as an oxide during the solid-state synthesis in an approach akin to the Trojan horse legend. By tailoring the procedure, it is possible to produce a uniform equilibrated structure with active emergent Pt nanoparticles strongly embedded in the perovskite surface that display better CO oxidation activity and stability than those of conventionally prepared Pt catalysts. This catalyst was further evaluated for a variety of reactions under realistic test environments—CO and NO oxidation, diesel oxidation catalysis and ammonia slip reactions were investigated.
更多
查看译文
关键词
Heterogeneous catalysis,Materials chemistry,Nanoparticles,Chemistry/Food Science,general,Analytical Chemistry,Organic Chemistry,Physical Chemistry,Inorganic Chemistry,Biochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要