Thermodynamics-Based Molecular Modeling Of Alpha-Helices In Membranes And Micelles

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2021)

引用 5|浏览2
暂无评分
摘要
The Folding of Membrane-Associated Peptides (FMAP) method was developed for modeling alpha-helix formation by linear peptides in micelles and lipid bilayers. FMAP 2.0 identifies locations of alpha-helices in the amino acid sequence, generates their three-dimensional models in planar bilayers or spherical micelles, and estimates their thermodynamic stabilities and tilt angles, depending on temperature and pH. The method was tested for 723 peptides (926 data points) experimentally studied in different environments and for 170 single-pass transmembrane (TM) proteins with available crystal structures. FMAP 2.0 detected more than 95% of experimentally observed alpha-helices with an average error in helix end determination of around 2, 3, 4, and 5 residues per helix for peptides in water, micelles, bilayers, and TM proteins, respectively. Helical and nonhelical residue states were predicted with an accuracy from 0.86 to 0.96, and the Matthews correlation coefficient was from 0.64 to 0.88 depending on the environment. Experimental micelle- and membrane-binding energies and tilt angles of peptides were reproduced with a root-mean-square deviation of around 2 kcal/mol and 7 degrees, respectively. The TM and non-TM states of hydrophobic and pH-triggered alpha-helical peptides in various lipid bilayers were reproduced in more than 95% of cases. The FMAP 2.0 web server (https://membranome.org/fmap) is publicly available to explore the structural polymorphism of antimicrobial, cell-penetrating, fusion, and other membrane-binding peptides, which is important for understanding the mechanisms of their biological activities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要