Light-curve Classification with Recurrent Neural Networks for GOTO: Dealing with Imbalanced Data
U. F. Burhanudin,J. R. Maund,T. Killestein,K. Ackley,M. J. Dyer,J. Lyman,K. Ulaczyk,R. Cutter,Y-L Mong,D. Steeghs,D. K. Galloway,V Dhillon,P. O'Brien,G. Ramsay,K. Noysena,R. Kotak,R. P. Breton,L. Nuttall,E. Palle,D. Pollacco,E. Thrane,S. Awiphan,P. Chote,A. Chrimes,E. Daw,C. Duffy,R. Eyles-Ferris,B. Gompertz,T. Heikkila,P. Irawati,M. R. Kennedy,A. Levan,S. Littlefair,L. Makrygianni,D. Mata-Sanchez,S. Mattila,J. McCormac,D. Mkrtichian,J. Mullaney,U. Sawangwit,E. Stanway,R. Starling,P. Strom,S. Tooke,K. Wiersema Monthly Notices of the Royal Astronomical Society(2021)
Key words
methods: data analysis,techniques: photometric,survey
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper