Evaluation of the tropical variability from the Beijing Climate Center’s real-time operational global Ocean Data Assimilation System

Advances in Atmospheric Sciences(2015)

Cited 11|Views8
No score
Abstract
The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC GODAS2.0 for the user community. BCC GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC GODAS2.0 reanalysis are compared and assessed with observations for 1990–2011. The climatology of the mixed layer depth of BCC GODAS2.0 is generally in agreement with that ofWorld Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC GODAS2.0 are evaluated. The standard deviation of the SST in BCC GODAS2.0 agrees well with observations in the tropical Pacific. BCC GODAS2.0 is able to capture the main features of El Ni˜no Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of El Ni˜no Modoki are also reproduced.
More
Translated text
Key words
operational oceanography,global ocean,3DVAR,El Ni˜no,interannual variability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined