Quantifying charge carrier localization in chemically doped semiconducting polymers

NATURE MATERIALS(2021)

引用 53|浏览2
暂无评分
摘要
Charge transport in semiconducting polymers ranges from localized (hopping-like) to delocalized (metal-like), yet no quantitative model exists to fully capture this transport spectrum and its dependency on charge carrier density. In this study, using an archetypal polymer–dopant system, we measure the temperature-dependent electrical conductivity, Seebeck coefficient and extent of oxidation. We then use these measurements to develop a semi-localized transport (SLoT) model, which captures both localized and delocalized transport contributions. By applying the SLoT model to published data, we demonstrate its broad utility. We are able to determine system-dependent parameters such as the maximum localization energy of the system, how this localization energy changes with doping, the amount of dopant required to achieve metal-like conductivity and the conductivity a system could have in the absence of localization effects. This proposed SLoT model improves our ability to predict and tailor electronic properties of doped semiconducting polymers.
更多
查看译文
关键词
Electronic properties and materials,Polymers,Thermoelectrics,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要