Distinct place cell dynamics in CA1 and CA3 encode experience in new environments

NATURE COMMUNICATIONS(2021)

Cited 0|Views0
No score
Abstract
When exploring new environments animals form spatial memories that are updated with experience and retrieved upon re-exposure to the same environment. The hippocampus is thought to support these memory processes, but how this is achieved by different subnetworks such as CA1 and CA3 remains unclear. To understand how hippocampal spatial representations emerge and evolve during familiarization, we performed 2-photon calcium imaging in mice running in new virtual environments and compared the trial-to-trial dynamics of place cells in CA1 and CA3 over days. We find that place fields in CA1 emerge rapidly but tend to shift backwards from trial-to-trial and remap upon re-exposure to the environment a day later. In contrast, place fields in CA3 emerge gradually but show more stable trial-to-trial and day-to-day dynamics. These results reflect different roles in CA1 and CA3 in spatial memory processing during familiarization to new environments and constrain the potential mechanisms that support them. To understand how spatial representations emerge and evolve across hippocampal subfields, we compared trial-to-trial dynamics of place cells in CA1 and CA3 in new environments and across days. CA1 place fields form early, shift backwards and partially remap across days whereas in CA3 they develop gradually and are more stable, suggesting distinct functional roles in representing space.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined