Increasing Stability Of Sno2-Based Perovskite Solar Cells By Introducing An Anionic Conjugated Polyelectrolyte For Interfacial Adjustment

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 10|浏览7
暂无评分
摘要
Despite the fact that power conversion efficiency (PCE) has been greatly improved in recent years, perovskite solar cells (PSCs) need to overcome some challenges, like stability, for the commercial application. Herein, an anionic conjugated polyelectrolyte, sulfonic-containing polyfluorene (abbreviated to SPF), has been developed to modify the interface between the electron-transporting layer (ETL) SnO2 and the optoelectronic active layer MAPbI(3) in the n-i-p cells. After 40 days of storage in atmospheric environment in the dark with exposure to a controlled humidity of about 10%, PCE of the SPF-modified cells with the structure of ITO/SnO2/SPF/MAPbI(3)/spiro-OMeTAD/Au still remained 94% of the initial value. In contrast, the control cell without SPF only remained 31.1% of its initial efficiency after 29 days. The main reason for the stability enhancement is the adjustment of interfacial energy level, the crystallinity enhancement, and the removal of the interfacial defect of the perovskite layer by introducing the hydrophobic and smooth SPF interfacial layer. Deep electrical study on the PSCs discloses that the cell has low carrier transfer resistance, low leakage current density, and minor interfacial charge accumulation. What's more, the short-circuit current density is improved, and PCE of 20.47% is achieved.
更多
查看译文
关键词
perovskite solar cells, anionic conjugated polyelectrolyte, cathode interlayer, Interfacial modification, photovoltaic, stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要